Mean spore size and shape in ectomycorrhizal and saprotrophic assemblages show strong responses under resource constraints

نویسندگان

  • Hans Halbwachs
  • Jacob Heilmann-Clausen
چکیده

Ectomycorrhizal and saprotrophic agaricoid basidiomycetes show diverse morphological reproductive traits, a phenomenon which has been attributed to their different lifestyles. From previous studies, we know that such differences are also reflected in assembly formation. Regardless of these differences, and assuming that dispersal fitness, predominantly by air movement, is one of the prevalent factors in fungal lifecycles, spores of both guilds should become on average more elongate and smaller with resource depletion. In our study we defined resource depletion as the decrease of living and dead organic biomass due to climate constraints along an elevational gradient in the Bavarian Forest (Germany). We found that spores of both guilds indeed become more elongate along the resource depletion gradient. Unexpectedly, the ectomycorrhizal assemblages showed larger spores under resource constraints, which could be a survivability trade-off. The spore trait syndrome responses to environmental constraints suggest ecological relevance, i.e. being advantageous in environments with patchily distributed resources. To deepen our mechanistic understanding of the underlying patterns, we particularly recommend experiments (artificial resource gradient free of confounding effects such as climate), and application of genomics and transcriptomics for elucidating the evolution of spore morphology. © 2016 Elsevier Ltd and British Mycological Society. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean reproductive traits of fungal assemblages are correlated with resource availability

Organisms have evolved a fascinating variety of strategies and organs for successful reproduction. Fruit bodies are the reproductive organ of fungi and vary considerably in size and shape among species. Our understanding of the mechanisms underlying the differences in fruit body size among species is still limited. Fruit bodies of saprotrophic fungi are smaller than those of mutualistic ectomyc...

متن کامل

Colonizing success of saprotrophic and ectomycorrhizal basidiomycetes on islands.

The biodiversity of saprotrophic and ectomycorrhizal basidiomycetous macrofungi growing on seven islands in central Japan were compared to examine colonizing success within the context of island biogeography theory. Two hypotheses were tested: that the number of the fungal species depends on island area and that the slope of the species-area curve for saprotrophic and ectomycorrhizal macrofungi...

متن کامل

Trait-dependent distributional shifts in fruiting of common British fungi

Despite the dramatic phenological responses of fungal fruiting to recent climate warming, it is unknown whether spatial distributions of fungi have changed and to what extent such changes are influenced by fungal traits, such as ectomycorrhizal (ECM) or saprotrophic lifestyles, spore characteristics, or fruit body size. Our overall aim was to understand how climate and fungal traits determine w...

متن کامل

Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings

1. Abiotic disturbance plays an important role in determining assemblage structure and maintaining species richness in many ecosystems. Disturbances events are complex, often affecting multiple environmental parameters simultaneously and causing selective removal of biomass. For this reason, observational studies often fail to elucidate the primary mechanism by which disturbance modifies assemb...

متن کامل

Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition

The relative roles of ectomycorrhizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017